Home Print this page Email this page Small font size Default font size Increase font size
Users Online: 6216
Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login 


 
 Table of Contents 
ORIGINAL ARTICLE
Year : 2020  |  Volume : 9  |  Issue : 9  |  Page : 4603-4612  

Cognitive impairment and its predictors: A cross-sectional study among the elderly in a rural community of West Bengal


Department of Preventive and Social Medicine, All India Institute of Hygiene and Public Health, Kolkata, West Bengal, India

Date of Submission11-Apr-2020
Date of Decision10-Jun-2020
Date of Acceptance02-Jul-2020
Date of Web Publication30-Sep-2020

Correspondence Address:
Dr. Sauryadripta Ghose
Barabazar, Mogaltuli (Bibir Bagan), Chinsurah, Hooghly, West Bengal - 712 101
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jfmpc.jfmpc_604_20

Rights and Permissions
  Abstract 


Context: With the aging of Indian society, maintaining salubrious cognitive health in late life is a public health priority. Early detection and possible prevention of cognitive impairment (CI), thus, will help in increasing the quality of life of elderly people and decreasing the social, psychological, and economic burden of their families and caregivers. Aims: The study aimed to assess proportion of CI and its predictors. Settings and Design: This community-based cross-sectional study was conducted among 135 elderly people selected from 15 villages out of a total 64 villages in rural field practice area Singur of AIIH&PH, Kolkata. Methods and Material: Cluster sampling technique was used and villages were selected according to probability proportional to size method. Data was collected using a predesigned, pretested structured schedule, which included sociodemographic and behavioral variables, Montreal cognitive assessment tool, Geriatric depression scale short form (GDS 15), and mini nutritional assessment tool. Statistical Analysis Used: Predictors of CI were assessed by univariate and multivariable logistic regression using MS-Excel 2016 and SPSS version 16 software. Results: Mean age of the study participants was 67.03 ± 6.7 years with 51.9% of them being females. Proportion of CI was observed to be 48.1% which was significantly associated with increasing age [AOR = 1.1 (1.02–1.13)], decreasing years of schooling [AOR = 1.1 (1.01–1.2)], depression [AOR = 2.7 (1.3–5.8)], and malnourished group [AOR = 4.5 (1.01–20.3)] Conclusion: The burden of CI among the study population was found to be quite high. It is an alarming situation which needs improved screening facility for early detection. Nutritional upliftment and screening for depression should also be done on a regular basis.

Keywords: Cognitive impairment, elderly, Montreal cognitive assessment (MoCA) tool


How to cite this article:
Dasgupta A, Ghose S, Paul B, Bandyopadhyay L, Ghosh P, Yadav A. Cognitive impairment and its predictors: A cross-sectional study among the elderly in a rural community of West Bengal. J Family Med Prim Care 2020;9:4603-12

How to cite this URL:
Dasgupta A, Ghose S, Paul B, Bandyopadhyay L, Ghosh P, Yadav A. Cognitive impairment and its predictors: A cross-sectional study among the elderly in a rural community of West Bengal. J Family Med Prim Care [serial online] 2020 [cited 2020 Oct 27];9:4603-12. Available from: https://www.jfmpc.com/text.asp?2020/9/9/4603/296300




  Introduction Top


Global population of elderly is growing at a fast pace. India, the projected second highest contributor to world's elderly after China, will be home for 330 million elderly population (60 years or older) by the year 2050[1] compared to 93 million according to the population census 2011. Cognitive impairment (CI) is defined as “confusion or memory loss that is happening more often or is getting worse during the past 12 months.”[2] CI debilitates daily life routine ultimately resulting in decreased quality of life and increased dependence. Elderly with CI have increased risk for progression to dementia and increased likelihood of contracting Alzheimer's disease than the general population.[3] It is estimated that the number of people living with dementia will almost double every 20 years to 42.3 million in 2020 and 81.1 million in 2040.[4] The rate of growth will be the highest (around 336%) in India, China, South Asia, and western Pacific regions.[4] It is estimated that over 3.7 million people were affected by dementia in our country in 2010 which is expected to double by 2030.[5] CI, being the most consistent and characteristic symptom of Alzheimer's disease, can be considered a proxy for dementia and Alzheimer's disease in population-based studies.[6] Till date, the treatment of CI is not available; therefore, only preventive measures taken at an appropriate time can help in reducing the burden of disease. For lack of realization and understanding of dementia in majority of countries including India, stigmatization, barriers to diagnosis and care happen, which impact caregivers, families, and societies physically, psychologically, and economically.

Various sociodemographic, physical, and psychological factors have been found to be associated with CI. Increasing age,[7] male gender,[8] poor socioeconomic status, low levels of education, and working status have been identified as risk factors in different settings.[9] Patients with diabetes mellitus[10] and hypertension[11] are at higher risk of developing CI. Psychiatric disorders like anxiety and depression also predispose older adults to develop CI later in life.[12] Increasing years of schooling[7] and socialization[13] have been reported as protective against CI. Nutrition is also known to be a key factor that regulates aging. Relationship between nutritional status and cognitive status of elderly, particularly in those who are malnourished and at risk of malnutrition, has been observed both in hospital and community-based research.[14],[15],[16]

All these call for more research work on the risk factors for this very much dreaded impairment and, therefore, a study was conducted in a rural area of West Bengal to assess the status of CI among the geriatric population and also to identify its contextual factors. This study may prove to be useful in improving the quality of life of elderly population by delaying CI and dementia and, thus, drastically reducing the social, psychological, and economic burden of their families and caregivers.

The demographic shift with an increase in the number of elder people is particularly relevant for primary care physicians (PCPs) who provide the majority of medical care for them. But, ironically, CI recognition by PCPs in the absence of frank dementia is very difficult. Therefore, knowing the important predictors of CI will be extremely useful for them in order to delay the CI and, thus, preventing dementia.

WHO states that “The Decade of Healthy Aging (2020-2030) is an opportunity to bring together governments, civil society, international agencies, professionals, academia, the media, and the private sector for 10 years of concerted, catalytic, and collaborative action to improve the lives of older people, their families, and the communities in which they live.”[17] Hence, just before the beginning of the decade of healthy aging, this study may provide a small contribution for bigger good of older people.


  Subjects and Methods Top


Study type and setting

This community-based observational study with cross-sectional design was conducted in the rural field practice area of All India Institute of Hygiene and Public Health (AIIH&PH), Kolkata, i.e., Singur in the district of Hooghly from May 2019 to August 2019. It serves a population of 99299 (according to 2011 census) residing in 64 villages in Singur Block of Hooghly district. Study population was all the elderly aged 60 years and above in rural field practice area of All India Institute of Hygiene and Public Health. All elderly who were residing for at least 1 year in the village were included in study. Those who had not given informed written consent, critically ill at the time of the study and with severe speech, visual and hearing impairment were excluded from the study. Ethical approval was obtained from Institutional Ethics Committee (IEC) of All India Institute of Hygiene and Public Health. Date of approval 11-10-2018.

Sampling

A study[18] on CI among elderly persons of rural area of Thrissur district, Kerala, India in 2016 showed the prevalence of 55% CI among the study population. Based on this prevalence, taking confidence interval as 95% with Z1-α= 1.96; relative error (L) = 20% according to the formula (Z1-α) 2 × (P × Q/L2), where P = 0.55, Q = 1-P = 0.45, calculated sample size was 78.58 ≈ 79. As the sampling was conducted by cluster sampling and not by simple random sampling, considering design effect of 1.5 sample size was 79 × 1.5 = 118.5 ≈ 119. Adding 10% as nonresponse rate the sample size comes to 119 + (119 × 10/100) = 130.9 ≈ 131. 15 clusters had been decided. Thus, the number of elderly people per cluster was 131 ÷ 15 = 8.73 ≈ 9. Therefore, the final sample size was = 15 × 9 = 135 elderly people.

Cluster sampling method was used taking fifteen villages (cluster) and nine study participants in each village. Rural field practice area had 64 villages. List of population of all villages was obtained. From the list, 15 villages were selected by probability proportional to size (PPS) technique.

After going to center of the selected village with the help of local maps and local people, at first one direction was chosen randomly with the help of a currency note. Then, one house number was chosen randomly by the currency note. If an elderly person was present in that house, the house was taken as first house. If not present, then the next and then the neighbouring houses were visited continuously till all the nine elderly people had been covered in the selected cluster. In case of end of road, restart from the next lane was done. The same procedure was followed in all the 15 clusters.

Data collection

After obtaining permission from the Institutional Ethics Committee of AIIH&PH, Kolkata, a house-to-house visit was done. Informed written consent was taken from all study participants before data collection. Face-to-face interview was done for all study participants using a predesigned, pretested, structured schedule (in Bengali language) containing the following contents:

  • Sociodemographic and behavioral information
  • Morbidity profile
  • Geriatric depression scale (short form) schedule
  • Mini nutritional assessment (MNA) tool (Bengali version)
  • Montreal cognitive assessment (MoCA) tool (Bengali version)


Operational definition

  • Cognitive Impairment: CI was measured by Montreal Cognitive Assessment (MoCA) tool (Bengali version). According to that tool, a score of less than 26 was considered as the presence of CI. The maximum score attainable was 30. [Supplementary file 1]

  • Depression: Depression was measured by Geriatric depression scale (GDS) 15. In GDS 15, a score >5 was considered as depression. [Supplementary file 2]

  • Nutritional status: Nutritional status was measured by MNA tool for the elderly. A score of ≥12 was taken as normal, 8–11 at risk, and ≤7 was considered as malnourished. [Supplementary file 3]



Statistical analysis

Data were analyzed using Microsoft Excel 2016 and Statistical Package for the Social Sciences (SPSS for Windows, version 16.0, SPSS Inc., Chicago, USA) software. Descriptive and inferential statistics including univariate and multivariable logistic regression were performed. Level of statistical significance was defined as P value <0.05. Biologically plausible variables which were statistically significant in univariate models were selected in final multivariable model.

Ethical permission

Ethical approval was taken from the Institutional Ethics Committee (IEC) of AIIH&PH, Kolkata.


  Results Top


Sociodemographic and behavioral characteristics

Background information of the study subject participated in the current study revealed the mean age of the study participants as 67.03 ± 6.7 years ranging from 60 to 88 years. Female participants consisted of 51.9% of total participants. Mean years of schooling was 4.05 ± 4.6 years with 37.8% of illiteracy. According to B.G. Prasad socioeconomic scale 2019, most of them belonged to Class III socioeconomic group (52.6%). Mean per capita income of the participants was 2786.9 ± 1169 INR per month. Most of the study participants were married (68.9%) and the majority belonged to a joint family (65.9%). Majority of the study participants were financially dependent (62.2%) and approximately two-thirds of them were not working and staying at home (66.7%).

Addiction to tobacco smoking was found in 34.8% study participants, whereas 11.1% consumed alcohol. Smokeless tobacco products were used by 18.5% of the study participants.

Proportion of cognitive impairment

CI was found in 48.1% of the study participants by Montreal cognitive assessment tool.

Morbidity profile

Medical reports and self-reporting revealed that 63% of the study participants were hypertensive and 19.3% were diabetic. According to GDS, 45.9% of the participants suffered from depression, whereas MNA tool for elderly assessed that 7.4% participants were malnourished and 46.7% were at risk of malnutrition.

Associated factors

Univariate logistic regression showed that CI was significantly associated with increasing age [OR = 1.08 (1.02–1.14); P value 0.007] and lesser years of schooling [OR = 1.1 (1.02–1.2); P value 0.012]. Association with various sociodemographic and behavioral characteristics is given in [Table 1].
Table 1: Univariate logistic regression showing association of cognitive impairment with various sociodemographic and behavioral factors (n=135)

Click here to view


Association with various morbidity profiles is given in [Table 2]. CI was found to be significantly associated with depression [OR = 3.1 (1.5–6.2); P value 0.002]. Both “at risk” of malnourishment [OR = 2.8 (1.3–5.7); P value 0.006] and “malnourished” [OR = 4.6 (1.1–19.4); P value 0.04] group according to MNA were significantly associated with CI.
Table 2: Univariate logistic regression showing association of cognitive impairment with various morbidity profiles (n=135)

Click here to view


Multivariable Logistic Regression showed that increasing age, decreasing years of schooling, depression, and “malnourished” group according to MNA retained their significance [Table 3]. This model was fitting well evident from insignificant P value in Hosmer and Lemeshow test and 17.9% to 23.9% variability of dependent variable was explained by this model through Cox and Snell and Nagelkerke R square.
Table 3: Multivariable logistic regression showing the association of cognitive impairment with various covariates (n=135)

Click here to view


[Figure 1] shows very strong negative correlation between MoCA score and GDS score (Spearman's rho = −0.356; P value < 0.01).
Figure 1: Scatter diagram with fit line showing correlation between MoCA score and GDS score

Click here to view


[Figure 2] shows very strong positive correlation between MoCA score and MNA score (Spearman's rho = 0.379; P value < 0.01).
Figure 2: Scatter diagram with fit line showing correlation between MoCA score and MNA score

Click here to view



  Discussion Top


The proportion of CI observed in the current study was 48.1%. The prevalence of CI was found to be 55% in a study conducted in Thrissur, Kerala by Ramachandran et al.[18], whereas the prevalence of CI was 31% as reported in an outdoor patient department (OPD)-based study in Tirupati.[19] A camp-based study carried out in a rural population of Varanasi by Gambhir et al. showed that 42.9% of the elderly had CI[20] and in another study among the inmates of old age home in Hyderabad, it was found to be 38%.[21] The prevalence of CI among community-dwelling older adults in Jamaica was found to be 32.2%,[22] whereas, in a study conducted in elderly care home in Malaysia, it was found to be 36.5%.[23] All these were more or less similar to our study. However, CI prevalence was much less (8.8%) in the study by Sengupta et al. in Ludhiana, Punjab.[6] The prevalence of CI was also less in a study conducted in Shimla hills (3.5%; 1.3%-urban, 2.3%-rural) by Sharma et al.[24]

CI was significantly associated with increasing age, decreasing years of schooling, depression, and poor nutritional status in the current study. The study conducted in Thrissur, Kerala found that CI was significantly associated with older age groups, female gender, elderly belonging to below poverty line (BPL) families, financial dependence, single/widowed status, and nutritional status.[18] The OPD-based study of Tirupati by Kumar et al. showed that CI significantly related to age, gender, and literacy status. CI was higher in females compared to males.[19] The camp-based study of Varanasi found that literate and male elderly had statistically significant higher mean score as compared to illiterates and females. Significant correlation of CI with increasing age was also observed.[20] The study in Hyderabad by Rao et al. among the inmates of old age home showed a significant association of CI with age and literacy status. However, no significant association with gender, marital status, socioeconomic status, type of family, residence was seen.[21] The study from Ludhiana, Punjab found that increasing age, unmarried/widowed status, illiteracy, unemployment, and poverty were independently associated with CI.[6] The study in Shimla hills showed that increasing age, educational level, and marital status acting as significant predictors of CI in the elderly.[22] Ferdous et al. in a study done in 457 elderly subjects in rural Bangladesh, found that poorer cognitive performance was independently associated with older age, female sex, and illiteracy.[25] The Jamaican study by Waldron et al. showed that CI was significantly associated with age, educational level, gender, area of residence, hospitalization in the last 3 years, falls in the last 3 months, limited activities for fear of falling, self-reported diabetes mellitus and hypertension, depression, and dependence in ADL.[23] The study conducted in elderly care home in Malaysia by Al-Jawad et al. found that CI was significantly related to age but not with gender.[24]

CI was significantly associated with increasing age in the current study, which is a similar finding in almost all other studies mentioned above. There are structural and functional changes in the brain that correlate with these age-related cognitive changes, including alterations in neuronal structure without neuronal death, loss of synapses, and dysfunction of neuronal networks. Age-related illnesses accelerate the rate of neuronal dysfunction, neuronal loss, and cognitive decline, with many persons developing CIs which is critical enough to reduce their everyday functional abilities, the definition of dementia.[26]

CI was significantly associated with decreasing years of schooling in the current study, which is a similar finding across all other studies mentioned above. There are several possible explanations for the association between literacy and cognitive function. The association could be a test bias, in which elderly persons with higher literacy levels perform better on cognitive tests because they are more adept at taking tests in general. Literacy also could reflect a person's innate level of cognitive ability or the effect of early life exposures and educational experiences. Alternatively, literacy could be causally associated with better cognitive function or could be a marker of other causal factors. For example, reading and writing could lead directly to the enrichment of neural networks, which could enable persons with higher levels of literacy to have larger cognitive reserves and to process cognitive information more efficiently.[27]

Depression is associated with CI in our study which was also found in the Jamaican study by Waldron et al.[23] Emotional processing, motivational processing, and cognitive processing each require interactions within and among specific brain networks. Common psychiatric illnesses involve varying degrees of dysregulation in these three domains. Although major depressive disorder may be viewed primarily as a disease of emotional dysregulation, it also involves significant cognitive changes.[28] CI is familiar among elderly with late-life depression (LLD). CI in LLD possibly appears as a result of various abnormalities, including structural brain changes (i.e., cerebrovascular vascular changes, grey matter atrophy) and molecular abnormalities, in particular in inflammatory and neurotrophic cascades.[29] Different type of psychotherapies, such as cognitive behavioral therapy, may lead to an improvement in the clinical symptoms of depression. But it is still remaining unclear if effective psychotherapies also lead to progress in cognitive deficits associated with depression.[28]

Nutritional status is also one important significant finding associated with CI in this study which is similar to the study done by Ramachandran et al. in Thrissur district of Kerala.[18] Mantzorou et al. also found that malnutrition in the elderly was associated with CI independently of age, gender, educational level, BMI, and mid-arm and calf circumference from their study among Greek population in seven Greek cities.[30] This relationship can be explained by the effect of dietary factors on multiple brain processes by regulating neurotransmitter pathways, synaptic transmission, membrane fluidity, and signal-transduction pathways. Particularly to note is the effect of oxidative damage on the brain, wherein lies the importance of vitamins C, E and β-carotene.[31]


  Conclusion Top


Cognitive health maintenance among aging population for a better quality of life is a public health priority. This study offers baseline information regarding the magnitude of CI among the rural elderly population in the area studied. The study design was cross-sectional and, therefore, it was not possible to make causal inferences from the associations found. Nevertheless, the findings of the study revealed that various sociodemographic factors like age, years of schooling as well as depression and nutritional status were associated with CI.

Therefore, timely screening and early intervention of the important preventable risk factors identified in this study may prove useful in improving the quality of life of elderly population by delaying CI and dementia. Cognitive health screening for early detection of CI could be introduced as a part of existing geriatric services at the level of Primary Health Center through the National Programme for Health Care of the Elderly (NPHCE). To prevent or delay CI, counseling of the elderly for the intake of a balanced diet and screening for depression should also be done on a regular basis. There is growing evidence that healthy lifestyles may decrease the rate of cognitive decline seen with aging and help delay the onset of cognitive symptoms in the setting of age-associated diseases. These healthy lifestyle components may comprise physical activity, mental stimulation, avoiding excessive exposure to neurotoxins (e.g., alcohol), treating depression and managing stress, and controlling common medical conditions such as hypertension, diabetes, and obstructive sleep apnea.[26] Hence, we may already hold the keys to driving a successful movement to minimize the detrimental impact of age on cognition and to delay the onset of dementia in the elderly.

There is also a need for a multicentric prevalence study with associated factors of CI in India in order to generate robust data, using which strengthening of the geriatric care services can be done so as to minimize the destructive effect of CI and holding the onset of dementia in the elderly. This will go a long way in increasing the quality of life of elderly people and decreasing the social, psychological, and economic burden of their families and caregivers.

Acknowledgement

We want to convey our gratitude to Director of All India Institute of Hygiene and Public Health to permit us to conduct this study. We also acknowledge the support of health functionaries of Rural Health Unit and Training Center, Singur under AIIHPH for their untiring support.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.


  Supplementary Files Top




 
  References Top

1.
United Nations [Internet]. World population ageing. Department of Economic and Social Affairs, New York, USA; 2015 [cited 2020 Mar 25]. Available from: https://www.un.org/en/development/desa/population/publications/pdf/ageing/WPA2015_Report.pdf.  Back to cited text no. 1
    
2.
Centers for Disease Control and Prevention [Internet]. Cognitive impairment: A call for action, Now!; 2011 [cited 2020 Mar 26]. Available from: http://www.cdc.gov/aging/pdf/cognitive_impairment/cogimp_poilicy_final.pdf.  Back to cited text no. 2
    
3.
Maroof M, Ahmad A, Khalique N, Ansari MA, Shah MS, Eram U. Prevalence and determinants of cognitive impairment among rural elderly population of Aligarh. Ntl J Community Med 2016;7:189-92.  Back to cited text no. 3
    
4.
Ferri CP, Prince M, Brayne C, Brodaty C, Fratiglioni L, Ganguli M, et al. Global prevalence of dementia: A Delphi consensus study. Lancet 2005;366:2112-7.  Back to cited text no. 4
    
5.
Shaji KS, Jotheeswaran AT, Girish N, Bharath S, Dias A, Pattabiraman M, et al. The dementia India report: Prevalence, impact, costs and services for dementia. Alzheimer's and Related Disorders Society of India; 2010.  Back to cited text no. 5
    
6.
Sengupta P, Benjamin AI, Singh Y, Grover A. Prevalence and correlates of cognitive impairment in a north Indian elderly population. WHO South-East Asia J Public Health 2014;3:135-43.  Back to cited text no. 6
[PUBMED]  [Full text]  
7.
Afgin AE, Massarwa M, Schechtman E, Israeli-Korn SD, Strugatsky R, Abuful A, et al. High prevalence of mild cognitive impairment and Alzheimer's disease in arabic villages in northern Israel: Impact of gender and education. J Alzheimer's Dis 2012;29:431-9.  Back to cited text no. 7
    
8.
Sosa AL, Albanese E, Stephan BC, Dewey M, Acosta D, Ferri CP, et al. Prevalence, distribution, and impact of mild cognitive impairment in Latin America, China, and India: A 10/66 population-based study. PLoS Med 2012;9:e1001170.  Back to cited text no. 8
    
9.
Marengoni A, Fratiglioni L, Bandinelli S, Ferrucci L. Socioeconomic status during lifetime and cognitive impairment no-dementia in late life: The population-based aging in the Chianti Area (InCHIANTI) Study. J Alzheimers Dis 2011;24:559-68.  Back to cited text no. 9
    
10.
Luchsinger JA, Reitz C, Patel B, Tang MX, Manly JJ, Mayeux R. Relation of diabetes to mild cognitive impairment. Arch Neurol 2007;64:570-5.  Back to cited text no. 10
    
11.
Reitz C, Tang MX, Manly J, Mayeux R, Luchsinger JA. Hypertension and the risk of mild cognitive impairment. Arch Neurol 2007;64:1734-40.  Back to cited text no. 11
    
12.
Geda YE, Roberts RO, Mielke MM, Knopman DS, Christianson TJ, Pankratz VS, et al. Baseline neuropsychiatric symptoms and the risk of incident mild cognitive impairment: A population-based study. Am J Psychiatry 2014;171:572-81.  Back to cited text no. 12
    
13.
Anderson ND, Murphy KJ, Troyer AK. Living with mild cognitive impairment: A guide to maximizing brain health and reducing risk of dementia. Oxford University Press; 2012.  Back to cited text no. 13
    
14.
El Zoghbi M, Boulos C, Amal AH, Saleh N, Awada S, Rachidi S, et al. Association between cognitive function and nutritional status in elderly: A crosssectional study in three institutions of Beirut Lebanon. Geriatr Ment Heal Care 2013;1:73-81.  Back to cited text no. 14
    
15.
Malara A, Sgrò G, Caruso C, Ceravolo F, Curinga G, Renda GF, et al. Relationship between cognitive impairment and nutritional assessment on functional status in Calabrian long-term-care. Clin Interv Aging 2014;9:105.  Back to cited text no. 15
    
16.
Magri F, Borza A, del Vecchio S, Chytiris S, Cuzzoni G, Busconi L, et al. Nutritional assessment of demented patients: A descriptive study. Aging Clin Exp Res 2003;15:148-53.  Back to cited text no. 16
    
17.
World Health Organization [Internet]. Decade of Healthy Ageing (2020-2030) [cited Mar 27]. Available from: https://www.who.int/ageing/decade-of-healthy-ageing.  Back to cited text no. 17
    
18.
Ramachandran R, Mundodan JM, Saju CR, Joshy VM. Nutritional status and cognitive impairment in elderly population in a rural area of Thrissur district, Kerala. Int J Community Med Public Health 2018;5:1218-23.  Back to cited text no. 18
    
19.
Kumar N, Sudhakar TP. Prevalence of cognitive impairment and depression among elderly patients attending the medicine outpatient of a tertiary care hospital in South India. Int J Res Med Sci 2013;1:359-64.  Back to cited text no. 19
    
20.
Gambhir IS, Khurana V, Kishore D, Sinha AK, Mohapatra SC. A clinico-epidemiological study of cognitive function status of community- dwelling elderly. Indian J Psychiatry 2014;56:365-70.  Back to cited text no. 20
[PUBMED]  [Full text]  
21.
Rao SS, Chennamsetty SK, Kuna SR. A cross-sectional study of cognitive impairment and morbidity profile of inmates of old age home. Sch J App Med Sci 2014;2:1506-13.  Back to cited text no. 21
    
22.
Waldron N, Laws H, James K, Willie-Tyndale D, Holder-Nevins D, Mitchell-Fearon K, et al. The prevalence of cognitive impairment among older adults in Jamaica. WIMJ Open 2015;2:71-6.  Back to cited text no. 22
    
23.
Al-Jawad M, Rashid AK, Narayan KA. Prevalence of undetected cognitive impairment and depression in residents of an elderly care home. Med J Malaysia 2007;62:375-9.  Back to cited text no. 23
    
24.
Sharma D, Mazta SR, Parashar A. Prevalence of cognitive impairment and related factors among elderly: A population- based study. J Dr NTR Univ Health Sci 2013;2:171-6.  Back to cited text no. 24
    
25.
Ferdous T, Cederholm T, Kabir ZN, Hamadani JD, Wahlin Š. Nutritional status and cognitive function in community-living rural Bangladeshi older adults: Data from the poverty and health in ageing project. J Am Geriatr Soc 2010;58:919-24.  Back to cited text no. 25
    
26.
Murman DL [Internet]. The Impact of Age on Cognition; 2015 [cited 2020 March 30]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4906299/#__ffn_sectitle.  Back to cited text no. 26
    
27.
Barnes DE, Tager IB, Satariano WA, Yaffe K [Internet]. The Relationship between Literacy and Cognition in Well-Educated Elders. The Journals of Gerontology; 2004 [cited 2020 Mar 31]. Available from: https://academic.oup.com/biom\edgerontology/article/59/4/M390/637780.  Back to cited text no. 27
    
28.
Rubin E [Internet]. Cognitive Impairment in Depression; 2016 [cited 2020 March 30]. Available from: https://www.psychologytoday.com/us/blog/demystifying psychiatry/201606/cognitive-impairment-in-depression.  Back to cited text no. 28
    
29.
Diniz BS, Butters MA. Biomarkers of cognitive impairment in latelife depression. In: Hantke N, Etkin A, O'Hara R, editors. Handbook of mental health and aging. 3rd ed. Academic Press; 2020. p. 81-5.  Back to cited text no. 29
    
30.
Mantzorou M, Vadikolias K, Pavlidou E, Serdari A, Vasios G, Tryfonos C, et al. Nutritional status is associated with the degree of cognitive impairment and depressive symptoms in a Greek elderly population. Nutrit Neurosci 2020;23:201-9.  Back to cited text no. 30
    
31.
Gonzalez-Gross M, Marcos A, Pietrzik K. Nutrition and cognitive impairment in the elderly. Br J Nutr 2001;86:313-21.  Back to cited text no. 31
    


    Figures

  [Figure 1], [Figure 2]
 
 
    Tables

  [Table 1], [Table 2], [Table 3]



 

Top
   
 
  Search
 
Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Access Statistics
Email Alert *
Add to My List *
* Registration required (free)

 
  In this article
   Abstract
  Introduction
  Subjects and Methods
  Results
  Discussion
  Conclusion
  Supplementary Files
   References
   Article Figures
   Article Tables

 Article Access Statistics
    Viewed279    
    Printed2    
    Emailed0    
    PDF Downloaded19    
    Comments [Add]    

Recommend this journal