Home Print this page Email this page Small font size Default font size Increase font size
Users Online: 608
Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login 

 Table of Contents 
Year : 2018  |  Volume : 7  |  Issue : 2  |  Page : 324-330  

Vitamin D deficiency in India

Centre for Community Medicine, All India Institute of Medical Sciences, New Delhi, India

Date of Web Publication11-Jul-2018

Correspondence Address:
Dr. Sanjeev Kumar Gupta
Centre for Community Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi - 110 029
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/jfmpc.jfmpc_78_18

Rights and Permissions

Vitamin D is a fat-soluble vitamin playing a vital role in human physiology. Vitamin D deficiency is prevalent worldwide. This deficiency has many consequences which are still being explored, apart from the well-known skeletal complications. With this review, we aim to summarize the existing literature on Vitamin D status in India and understand the enormity of the problem. The prevalence of Vitamin D deficiency ranged from 40% to 99%, with most of the studies reporting a prevalence of 80%–90%. It was prevalent in all the age groups and high-risk groups alike. With the consequences of Vitamin D deficiency, namely, autoimmune diseases, cardiovascular diseases, cancer, and tuberculosis being explored, we can imagine the burden it would cause in our country. We need to create awareness among the public and healthcare providers about the importance of Vitamin D and the consequences of deficiency. Our Indian diet generally fails to satisfy the daily requirement of Vitamin D for a normal adult. This stresses on the need for fortifying various food with Vitamin D, through the national programs. This silent epidemic should be addressed appropriately with concrete public health action.

Keywords: Fortification, India, prevalence, Vitamin D deficiency

How to cite this article:
Aparna P, Muthathal S, Nongkynrih B, Gupta SK. Vitamin D deficiency in India. J Family Med Prim Care 2018;7:324-30

How to cite this URL:
Aparna P, Muthathal S, Nongkynrih B, Gupta SK. Vitamin D deficiency in India. J Family Med Prim Care [serial online] 2018 [cited 2021 Sep 25];7:324-30. Available from: https://www.jfmpc.com/text.asp?2018/7/2/324/236436

Vitamin D is a fat-soluble vitamin, known for its antirachitic activity.[1] Calciferols are a group of lipid-soluble compounds with a 4-ringed cholesterol backbone and refer to both, Vitamin D3, i.e., cholecalciferol and Vitamin D2, i.e., ergocalciferol.[2] Vitamin D, in general, refers to Vitamin D3. Vitamin D can be synthesized endogenously. About 90% of the required Vitamin D is synthesized in the skin under sun exposure.[3]

It is needed for the maintenance of normal blood levels of calcium and phosphate that are required for normal mineralization of bone, muscle contraction, nerve conduction, and general cellular function in all cells of the body. It is also found to be important for immune function, for inflammation, cell proliferation, and differentiation.[3],[4]

The active form of Vitamin D stimulates the absorption of calcium in the duodenum and increases calcium influx in distal tubules of kidney through nuclear Vitamin D receptor (VDR); latter is specifically regulated by parathormone level.[5]

  Sources of Vitamin D3 Top

The major source of Vitamin D is the endogenous synthesis in skin on exposure to sunlight, namely, ultraviolet B (UV-B) radiation of wavelength 290–320 nm. Main dietary sources are fish, fortified food, and supplements. Vegetables and grains are poor sources.

Synthesis of vitamin in skin on exposure to UV-B is also affected by latitude, solar zenith angle, atmospheric pollution, ozone layer, and melanin pigmentation.[6]

  Metabolism Top

In the skin, ultraviolet light catalyzes conversion of 7-dehydrocholesterol to Vitamin D3, which is released into the bloodstream, in bound form (along with Vitamin D-binding protein).[3],[4],[7]

From the blood, it reaches liver to form 25-hydroxyvitamin D(25(OH)D). This is followed by formation of 1, 25-dihydroxyvitamin D, the most active form of Vitamin D in the kidney by hydroxylation and in some other tissues in which the mechanism is unclear.

Formation of 1, 25 dihydroxyvitamin D, is the key step in regulating Vitamin D metabolism, which is increased by low serum phosphate concentrations and low serum calcium, mediated by parathyroid hormone. Cellular receptors for active form of Vitamin D are found in intestine, bone, and in many other tissues also.

25(OH)D is the most useful measure and reflects the Vitamin D status in the body because the level depends on the available and circulating Vitamin D.[8] The level of 1, 25 dihydroxyvitamin D is also a direct measure for assessing Vitamin D status; however, it is not used because of its regulation by calcium, phosphate, and parathyroid hormone concentrations. The half-life of 1, 25 dihydroxyvitamin D, calciferol, and 25(OH)D are 4 h, 24 h, and 3 weeks, respectively.

Clinical manifestation of rickets occurs only when there is severe Vitamin D deficiency. The sunlight exposure can be the most important determinant of 25(OH)D concentrations. Seasonal variation should be considered as there is difference in summer and winter season.

  Vitamin D Status in Relation to 25-Hydroxyvitamin D Levels Top

Adequate levels of serum 25(OH) D is essential to maintain the skeletal and extraskeletal physiologic effects. The threshold levels of serum 25(OH) D required to optimize its effects may not be the same in the various target organs. According to the classification given by the US Endocrine Society, <20 ng/mL of serum 25(OH) D with consequent and consistent elevation of parathyroid hormone and a decrease in intestinal calcium absorption is considered to be Vitamin D deficiency.[9] The diagnostic cutoffs of levels of serum Vitamin D are indicated in [Table 1].[9]
Table 1: Diagnostic cut-offs of levels of serum Vitamin D

Click here to view

Desirable and safe range of serum 25(OH) D level would be 30–100 ng/mL as at serum 25(OH) D levels of 30 ng/mL intestinal calcium absorption reaches its peak, and PTH levels continue to fall until this level of 25(OH) D is attained.[6],[10]

  Magnitude of Vitamin D Deficiency in India Top

The prevalence of Vitamin D deficiency is reported worldwide, both in sunshine deficient and sunshine sufficient countries. Still, it is the most underdiagnosed and undertreated nutritional deficiency in the world.[11],[12] However, various studies showed poor Vitamin D status irrespective of age, sex, and geography. As there is no standard guideline which is followed all over the world for classifying the Vitamin D status, these studies had different cutoff values for the deficiency. The vast majority of these studies used serum 25(OH) D level of <20 ng/ml as Vitamin D deficiency. Studies which used other cutoffs have been so indicated in footnotes.

The community-based Indian studies of the past decade done on apparently healthy controls reported a prevalence ranging from 50% to 94%, except for one study which reported a prevalence of 34.5% which can be due to the low cutoff. These studies which included various age groups reflect the magnitude of the problem. High prevalence was seen throughout the country [13],[14],[15],[16],[17],[18],[19],[20],[21],[22],[23],[24],[25],[26],[27],[28],[29],[30] [Table 2].
Table 2: Community-based studies on prevalence of Vitamin D deficiency in India

Click here to view

Hospital-based studies showed a prevalence of Vitamin D deficiency ranging from 37% to 99%.[31],[32],[33],[34],[35],[36],[37],[38],[39],[40],[41],[42],[43],[44],[45],[46] Studies on Vitamin D deficiency in specific disease conditions have been excluded from the study [Table 3].
Table 3: Hospital-based studies on the prevalence of Vitamin D deficiency in India

Click here to view

A school-based study on premenarchal girls (n = 214) in Pune was conducted by Kadam et al. in 2011. It showed a prevalence of 34.2% of Vitamin D.[47] Another school-based study done by Kapil et al. in 2017 on 1222 school children aged 6–18 years in Kangra and Kullu districts of Himachal Pradesh, showed the prevalence of 81% and 80% respectively.[14] Both the studies reported the prevalence of Vitamin D deficiency based on the U. S. Endocrine Society cutoff.[9]

  Causes of Vitamin D Deficiency Top

It is evident from the above tables that Vitamin D deficiency is quite rampant in India. Apart from low intake in diet, people with liver, kidney and skin disorders also have Vitamin D deficiency. There are many reasons for it being so common in our country.

  • Increased indoor lifestyle, thereby preventing adequate exposure to sunlight. This is mainly in the urban population due to modernization.
  • Pollution can hamper the synthesis of Vitamin D in the skin by UV rays [48]
  • Changing food habits contribute to low dietary calcium and Vitamin D intake
  • Phytates and phosphates which are present in fiber rich diet, can deplete Vitamin D stores and increase calcium requirement [49]
  • Increased skin pigmentation and application of sunscreens
  • Cultural practices such as the burqa and purdah system [34]
  • Unspaced and unplanned pregnancies in women with dietary deficit can lead to worsening of Vitamin D status in both mother and child.

  Consequences of Vitamin D Deficiency Top

Vitamin D deficiency results in a variety of skeletal and extraskeletal manifestations. Very few Indian studies have been published on the consequences of Vitamin D deficiency. Hence, overseas studies on this issue are cited.

Skeletal manifestations

The commonly known consequences of Vitamin D deficiency are rickets in children and osteomalacia and osteoporosis in adults. In children, it causes defective mineralization of bone due to imbalance between calcium and phosphorous in the bone, resulting in rickets and external skeletal deformity. It also causes muscle weakness and bone pain. In adults, inadequate dietary intake of Vitamin D leads to poor absorption of calcium from diet and increased calcium resorption from the bone and kidney and reduces bone mineral density resulting in osteoporosis and osteomalacia, muscle weakness and increased risk of falls. It is theorized that Vitamin D may increase muscle strength, thereby preventing falls. Many studies have shown an association between low Vitamin D concentrations and an increased risk of fractures and falls in older adults.[50],[51],[52],[53]


Vitamin D deficient patients took significantly longer duration for recovery than nondeficient persons. It signifies the importance of treating hypovitaminosis D for the effective management of depression.[54]

Parkinson's disease

Vitamin D insufficiency was seen in patients with Parkinson's disease (PD). Evidence suggests VDR as a genetic risk factor for PD, thereby underlining the potential importance of Vitamin D in PD. As Vitamin D status is a modifiable factor, Vitamin D acts as a potential preventive/therapeutic strategy for this disorder. However, there is a need for further studies on VDR as well as its interaction with Vitamin D levels in PD.[55],[56],[57]


Lower 25(OH) D levels are associated with an increased risk for suicide.[58]

Infectious disease

Infectious disease such as tuberculosis, upper respiratory tract infections of viral origin, i.e., influenza is seen in individuals with Vitamin D deficiency.[59],[60],[61]

Autoimmune diseases

Vitamin D is a potent modulator of immune system, and it is involved in regulating cell proliferation and differentiation.[62],[63],[64] It was shown in a case–control study that Vitamin D deficiency was considerably higher in Type 1 diabetic (91%) children when compared to nondiabetic (85%) children. Supplementation of Vitamin D resulted in 30% reduction in the risk of developing Type 1 diabetes mellitus. Lower levels of Vitamin D were found to be associated with rheumatoid arthritis.[50]


Vitamin D has a protective role in certain tissues by promoting apoptosis and inhibiting angiogenesis. Low level of Vitamin D in stores, such as lung, breast, colorectal, prostate, ovary, pancreas and esophagus, are associated with cancers. Vitamin D decreases cell proliferation and increases cell differentiation. It stops the growth of new blood vessels and has significant anti-inflammatory effects.[65],[66],[67]

Heart disease

In the Framingham Heart Study, patients with low Vitamin D concentrations (<15 ng/Ml) had a 60% higher risk of heart disease (through the renin-angiotensin hormone system) than those with higher concentrations. Severe Vitamin D deficiency is seen in patients with acute myocardial infarction and it is associated with many of its risk factors.[68],[69]

Type 2 diabetes mellitus

Vitamin D deficiency has been associated with increased risk of type 2 diabetes mellitus, insulin resistance, and decreased insulin production, and hence, it has been associated with syndrome X. A trial of nondiabetic patients aged 65 years and older found that those who received 700 IU of Vitamin D (plus calcium) had a smaller rise in fasting plasma glucose over 3 years versus those who received placebo. Evidence reveals that Vitamin D reduces the risk of progression and development of type 2 diabetes mellitus.[70],[71],[72]


Levels of 25(OH) D are inversely associated with body mass index, waist circumference, and body fat but are positively associated with age, lean body mass, and Vitamin D intake.[73],[74],[75]

  The Way Forward Top

Although we are aware of the causes of Vitamin D deficiency, we are not able to prevent it to a large extent. India being a tropical country has adequate sunshine. Most of the Indian population live in areas with adequate sunlight throughout the year and are expected to have adequate Vitamin D. Contrary to this, the prevalence of Vitamin D deficiency is high in India.

This is due to the skin complexion, poor exposure to sunlight, sunscreen creams, Indian dietary habits and lower intake of Vitamin D fortified foods.[48] Indians are mostly vegetarians and Vitamin D rich foods are of animal origin. All the above-mentioned factors can be a cause in urban population. However, the rural population, who by the virtue of their occupation have sufficient sunlight exposure, too have low Vitamin D levels. This can be due to the high phytate and low calcium diet they consume. Phytate rich diet is known to reduce the intestinal absorption of calcium. Hence, low dietary calcium increases the catabolism of 25(OH) D and increases the inactive metabolites with the resultant reduction in 25(OH)D concentrations.[49],[76]

This calls for appropriate and concrete public health action. The following measures can be taken to reduce the burden of the disease.

  • Food fortification with Vitamin D is the best option to address this issue. All grades of milk can be fortified. Oil and milk products such as curd, yogurt, infant formulas, and butter can be fortified with Vitamin D. Widely consumed food items such as atta, maida, and rice flour can also be fortified. Vitamin D fortified food items should be made available to the public at minimal cost and be included in the public distribution system. Effective legislation is required to ensure this. Sustained political and administrative will and support are a must for the development of a fortification program. In India, Vanaspati (dalda) is fortified with 200 IU of Vitamin D per 100 g. Milk products of certain brand are also fortified with Vitamin D
  • Educational programs are a must to create awareness about Vitamin D deficiency as it is the most underdiagnosed and undertreated nutritional disease. Both physicians and the public should be made aware of its implications. To develop, launch and sustain such a program, adequate investment in the form of time, money, and effort is required
  • Vitamin D supplements of good quality should be made available at PHC level for the population at risk, i.e., pregnant women, lactating women, children, and elderly
  • Revision of RDA for Vitamin D by ICMR is needed as it is less compared to other guidelines
  • School going children can be benefitted from the following: educating them about the need for Vitamin D sufficiency and healthy lifestyle; providing Vitamin D fortified foods at mid-day meals in schools; daily physical exercise which would ensure exposure to sunlight.
  • Testing facilities for Vitamin D levels should be made affordable and accessible to those at high risk of clinical Vitamin D deficiency (pregnant women, children, elderly especially women), as mass screening is not feasible
  • Government should support research groups to study and monitor the impact of supplementation programs and fortification strategies.

  Conclusion Top

In India, Vitamin D deficiency is widespread. However, the clinically diagnosed cases represent only the tip of the iceberg. With the knowledge of the multiple consequences, it can lead to; we can imagine the burden, this silent epidemic would cause the development of the country. Vitamin D deficiency needs to be addressed with due attention and strong action.

Financial support and sponsorship


Conflicts of interest

There are no conflicts of interest.

  References Top

Sharman IM. Vitamin D: Anti-rachitic factor and kidney hormone. Nutr Food Sci 1975;75:4-7.  Back to cited text no. 1
Houghton LA, Vieth R. The case against ergocalciferol (Vitamin D2) as a vitamin supplement. Am J Clin Nutr 2006;84:694-7.  Back to cited text no. 2
Holick MF. Vitamin D: A millenium perspective. J Cell Biochem 2003;88:296-307.  Back to cited text no. 3
Kumar V, Abbas AK, Aster JC. Robbins Basic Pathology. Environmental and Nutritional Diseases. 9th ed. Philadelphia: Elsevier Saunders; 2013. p. 438-41.  Back to cited text no. 4
Holick MF. The Vitamin D epidemic and its health consequences. J Nutr 2005;135:2739S-48S.  Back to cited text no. 5
Holick MF. Vitamin D deficiency. N Engl J Med 2007;357:266-81.  Back to cited text no. 6
Willet W. Nutritional epidemiology. In: Willet W, Lenart E, editors. Biochemical Indicators of Dietary Intake. 3rd ed. New York: Oxford University Press; 2013. p. 178-82.  Back to cited text no. 7
Dawson-Hughes B, Heaney RP, Holick MF, Lips P, Meunier PJ, Vieth R, et al. Estimates of optimal Vitamin D status. Osteoporos Int 2005;16:713-6.  Back to cited text no. 8
Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, et al. Evaluation, treatment, and prevention of Vitamin D deficiency: An endocrine society clinical practice guideline. J Clin Endocrinol Metab 2011;96:1911-30.  Back to cited text no. 9
El-Hajj Fuleihan G, Nabulsi M, Tamim H, Maalouf J, Salamoun M, Khalife H, et al. Effect of Vitamin D replacement on musculoskeletal parameters in school children: A randomized controlled trial. J Clin Endocrinol Metab 2006;91:405-12.  Back to cited text no. 10
van Schoor NM, Lips P. Worldwide Vitamin D status. Best Pract Res Clin Endocrinol Metab 2011;25:671-80.  Back to cited text no. 11
Mithal A, Wahl DA, Bonjour JP, Burckhardt P, Dawson-Hughes B, Eisman JA, et al. Global Vitamin D status and determinants of hypovitaminosis D. Osteoporos Int 2009;20:1807-20.  Back to cited text no. 12
Suryanarayana P, Arlappa N, Sai Santhosh V, Balakrishna N, Lakshmi Rajkumar P, Prasad U, et al. Prevalence of Vitamin D deficiency and its associated factors among the urban elderly population in Hyderabad metropolitan city, South India. Ann Hum Biol 2018;45:133-9.  Back to cited text no. 13
Kapil U, Pandey RM, Goswami R, Sharma B, Sharma N, Ramakrishnan L, et al. Prevalence of Vitamin D deficiency and associated risk factors among children residing at high altitude in Shimla district, Himachal Pradesh, India. Indian J Endocrinol Metab 2017;21:178-83.  Back to cited text no. 14
Chowdhury R, Taneja S, Bhandari N, Sinha B, Upadhyay RP, Bhan MK, et al. Vitamin-D deficiency predicts infections in young North Indian children: A secondary data analysis. PLoS One 2017;12:e0170509.  Back to cited text no. 15
Srimani S, Saha I, Chaudhuri D. Prevalence and association of metabolic syndrome and Vitamin D deficiency among postmenopausal women in a rural block of West Bengal, India. PLoS One 2017;12:e0188331.  Back to cited text no. 16
Misra P, Srivastava R, Misra A, Kant S, Kardam P, Vikram NK, et al. Vitamin D status of adult females residing in Ballabgarh health and demographic surveillance system: A community-based study. Indian J Public Health 2017;61:194-8.  Back to cited text no. 17
[PUBMED]  [Full text]  
Rattan R, Sahoo D, Mahapatra S. Prevalence of Vitamin D deficiency in adults in the coastal regions of Odisha, India. IOSR J Pharm Biol Sci 2016;11:49-52.  Back to cited text no. 18
Gunjaliya A, Patil R, Vaza J, Patel H, Maniyar A. Prevalence of Vitamin D deficiency in higher socioeconomical class of Ahemdabad, Gujarat, India. Int J Med Sci Public Health 2015;4:617-20.  Back to cited text no. 19
Bachhel R, Singh NR, Sidhu JS. Prevalence of Vitamin D deficiency in North-West Punjab population: A cross-sectional study. Int J Appl Basic Med Res 2015;5:7-11.  Back to cited text no. 20
Tandon VR, Sharma S, Mahajan S, Raina K, Mahajan A, Khajuria V, et al. Prevalence of Vitamin D deficiency among Indian menopausal women and its correlation with diabetes: A first Indian cross sectional data. J Midlife Health 2014;5:121-5.  Back to cited text no. 21
Agrawal NK, Sharma B. Prevalence of osteoporosis in otherwise healthy Indian males aged 50 years and above. Arch Osteoporos 2013;8:116.  Back to cited text no. 22
Harinarayan CV, Sachan A, Reddy PA, Satish KM, Prasad UV, Srivani P, et al. Vitamin D status and bone mineral density in women of reproductive and postmenopausal age groups: A cross-sectional study from South India. J Assoc Physicians India 2011;59:698-704.  Back to cited text no. 23
Marwaha RK, Tandon N, Garg MK, Kanwar R, Narang A, Sastry A, et al. Vitamin D status in healthy Indians aged 50 years and above. J Assoc Physicians India 2011;59:706-9.  Back to cited text no. 24
Sahu M, Bhatia V, Aggarwal A, Rawat V, Saxena P, Pandey A, et al. Vitamin D deficiency in rural girls and pregnant women despite abundant sunshine in Northern India. Clin Endocrinol (Oxf) 2009;70:680-4.  Back to cited text no. 25
Paul TV, Thomas N, Seshadri MS, Oommen R, Jose A, Mahendri NV, et al. Prevalence of osteoporosis in ambulatory postmenopausal women from a semiurban region in Southern India: Relationship to calcium nutrition and Vitamin D status. Endocr Pract 2008;14:665-71.  Back to cited text no. 26
Puri S, Marwaha RK, Agarwal N, Tandon N, Agarwal R, Grewal K, et al. Vitamin D status of apparently healthy schoolgirls from two different socioeconomic strata in Delhi: Relation to nutrition and lifestyle. Br J Nutr 2008;99:876-82.  Back to cited text no. 27
Goswami R, Kochupillai N, Gupta N, Goswami D, Singh N, Dudha A, et al. Presence of 25(OH) D deficiency in a rural North Indian village despite abundant sunshine. J Assoc Physicians India 2008;56:755-7.  Back to cited text no. 28
Vupputuri MR, Goswami R, Gupta N, Ray D, Tandon N, Kumar N, et al. Prevalence and functional significance of 25-hydroxyvitamin D deficiency and Vitamin D receptor gene polymorphisms in Asian Indians. Am J Clin Nutr 2006;83:1411-9.  Back to cited text no. 29
Harinarayan CV. Prevalence of Vitamin D insufficiency in postmenopausal South Indian women. Osteoporos Int 2005;16:397-402.  Back to cited text no. 30
Sofi NY, Jain M, Kapil U, Seenu V, Ramakrishnan L, Yadav CP, et al. Status of serum Vitamin D and calcium levels in women of reproductive age in national capital territory of India. Indian J Endocrinol Metab 2017;21:731-3.  Back to cited text no. 31
Bawaskar PH, Bawaskar HS, Bawaskar PH, Pakhare AP. Profile of Vitamin D in patients attending at general hospital Mahad India. Indian J Endocrinol Metab 2017;21:125-30.  Back to cited text no. 32
Pal CP, Kumar H, Kumar D, Mittal V, Deshwar G, Altaf D, et al. Prevalence of Vitamin D deficiency in orthopaedic patients – A single centre study. J Clin Orthop Trauma 2016;7:143-6.  Back to cited text no. 33
Ajmani SN, Paul M, Chauhan P, Ajmani AK, Yadav N. Prevalence of Vitamin D deficiency in burka-clad pregnant women in a 450-bedded maternity hospital of Delhi. J Obstet Gynaecol India 2016;66:67-71.  Back to cited text no. 34
Shukla K, Sharma S, Gupta A, Raizada A, Vinayak K. Current scenario of prevalence of Vitamin D deficiency in ostensibly healthy Indian population: A Hospital based retrospective study. Indian J Clin Biochem 2016;31:452-7.  Back to cited text no. 35
Sharma S, Kumar A, Prasad S, Sharma S. Current scenario of Vitamin D status during pregnancy in North Indian population. J Obstet Gynaecol India 2016;66:93-100.  Back to cited text no. 36
Kumar P, Shenoi A, Kumar RK, Girish SV, Subbaiah S. Vitamin D deficiency among women in labor and cord blood of newborns. Indian Pediatr 2015;52:530-1.  Back to cited text no. 37
Basu S, Gupta R, Mitra M, Ghosh A. Prevalence of Vitamin D deficiency in a pediatric hospital of Eastern India. Indian J Clin Biochem 2015;30:167-73.  Back to cited text no. 38
Garg MK, Tandon N, Marwaha RK, Menon AS, Mahalle N. The relationship between serum 25-hydroxy Vitamin D, parathormone and bone mineral density in Indian population. Clin Endocrinol (Oxf) 2014;80:41-6.  Back to cited text no. 39
Angurana SK, Angurana RS, Mahajan G, Kumar N, Mahajan V. Prevalence of Vitamin D deficiency in apparently healthy children in North India. J Pediatr Endocrinol Metab 2014;27:1151-6.  Back to cited text no. 40
Baidya A, Chowdhury S, Mukhopadhyay S, Ghosh S. Profile of Vitamin D in a cohort of physicians and diabetologists in Kolkata. Indian J Endocrinol Metab 2012;16:S416-7.  Back to cited text no. 41
Dasgupta A, Saikia U, Sarma D. Status of 25(OH) D levels in pregnancy: A study from the North Eastern part of India. Indian J Endocrinol Metab 2012;16:S405-7.  Back to cited text no. 42
Beloyartseva M, Mithal A, Kaur P, Kalra S, Baruah MP, Mukhopadhyay S, et al. Widespread Vitamin D deficiency among Indian health care professionals. Arch Osteoporos 2012;7:187-92.  Back to cited text no. 43
Marwaha RK, Tandon N, Chopra S, Agarwal N, Garg MK, Sharma B, et al. Vitamin D status in pregnant Indian women across trimesters and different seasons and its correlation with neonatal serum 25-hydroxyvitamin D levels. Br J Nutr 2011;106:1383-9.  Back to cited text no. 44
Multani SK, Sarathi V, Shivane V, Bandgar TR, MenonPS, Shah NS. Study of bone mineral density in resident doctors working at a teaching hospital. J Postgrad Med 2010;56:65-70.  Back to cited text no. 45
[PUBMED]  [Full text]  
Farrant HJ, Krishnaveni GV, Hill JC, Boucher BJ, Fisher DJ, Noonan K, et al. Vitamin D insufficiency is common in Indian mothers but is not associated with gestational diabetes or variation in newborn size. Eur J Clin Nutr 2009;63:646-52.  Back to cited text no. 46
Kadam NS, Chiplonkar SA, Khadilkar AV, Fischer PR, Hanumante NM, Khadilkar VV, et al. Modifiable factors associated with low bone mineral content in underprivileged premenarchal Indian girls. J Pediatr Endocrinol Metab 2011;24:975-81.  Back to cited text no. 47
Babu US, Calvo MS. Modern India and the Vitamin D dilemma: Evidence for the need of a national food fortification program. Mol Nutr Food Res 2010;54:1134-47.  Back to cited text no. 48
Harinarayan CV, Ramalakshmi T, Prasad UV, Sudhakar D, Srinivasarao PV, Sarma KV, et al. High prevalence of low dietary calcium, high phytate consumption, and Vitamin D deficiency in healthy South Indians. Am J Clin Nutr 2007;85:1062-7.  Back to cited text no. 49
Holick MF, Chen TC. Vitamin D deficiency: A worldwide problem with health consequences. Am J Clin Nutr 2008;87:1080S-6S.  Back to cited text no. 50
Holick MF. The role of Vitamin D for bone health and fracture prevention. Curr Osteoporos Rep 2006;4:96-102.  Back to cited text no. 51
Hazell TJ, DeGuire JR, Weiler HA. Vitamin D: An overview of its role in skeletal muscle physiology in children and adolescents. Nutr Rev 2012;70:520-33.  Back to cited text no. 52
Trivedi DP, Doll R, Khaw KT. Effect of four monthly oral Vitamin D3 (cholecalciferol) supplementation on fractures and mortality in men and women living in the community: Randomised double blind controlled trial. BMJ 2003;326:469.  Back to cited text no. 53
Nebhinani N, Sharma P, Suthar N. Role of Vitamin D supplementation in patients with depressive disorders and hypovitaminosis D: A longitudinal study. J Ment Health Hum Behav 2017;22:14-20.  Back to cited text no. 54
Gangwar AK, Rawat A, Tiwari S, Tiwari SC, Narayan J, Tiwari S, et al. Role of Vitamin-D in the prevention and treatment of Alzheimer's disease. Indian J Physiol Pharmacol 2015;59:94-9.  Back to cited text no. 55
Singh K, Singh VB, Meena BL, Beniwal S, Gaur S, Ujwal V, et al. Association of mild cognitive impairment with serum Vitamin D level in type 2 diabetes mellitus. Indian J Health Sci Biomed Res 2015;8:120-4.  Back to cited text no. 56
  [Full text]  
Butler MW, Burt A, Edwards TL, Zuchner S, Scott WK, Martin ER, et al. Vitamin D receptor gene as a candidate gene for Parkinson disease. Ann Hum Genet 2011;75:201-10.  Back to cited text no. 57
Umhau JC, George DT, Heaney RP, Lewis MD, Ursano RJ, Heilig M, et al. Low Vitamin D status and suicide: A case-control study of active duty military service members. PLoS One 2013;8:e51543.  Back to cited text no. 58
Urashima M, Segawa T, Okazaki M, Kurihara M, Wada Y, Ida H, et al. Randomized trial of Vitamin D supplementation to prevent seasonal influenza A in schoolchildren. Am J Clin Nutr 2010;91:1255-60.  Back to cited text no. 59
Banda R, Mhemedi B, Allain TJ. Prevalence of Vitamin D deficiency in adult tuberculosis patients at a central hospital in Malawi. Int J Tuberc Lung Dis 2011;15:408-10.  Back to cited text no. 60
Arya SC, Agarwal N. Vitamin D deficiency in adult tuberculosis patients. Int J Tuberc Lung Dis Off J Int Union Tuberc Lung Dis 2011;15:1133-4.  Back to cited text no. 61
Zipitis CS, Akobeng AK. Vitamin D supplementation in early childhood and risk of type 1 diabetes: A systematic review and meta-analysis. Arch Dis Child 2008;93:512-7.  Back to cited text no. 62
Borkar VV, Devidayal, Verma S, Bhalla AK. Low levels of Vitamin D in North Indian children with newly diagnosed type 1 diabetes. Pediatr Diabetes 2010;11:345-50.  Back to cited text no. 63
Bener A, Alsaied A, Al-Ali M, Al-Kubaisi A, Basha B, Abraham A, et al. High prevalence of Vitamin D deficiency in type 1 diabetes mellitus and healthy children. Acta Diabetol 2009;46:183-9.  Back to cited text no. 64
Lappe JM, Travers-Gustafson D, Davies KM, Recker RR, Heaney RP. Vitamin D and calcium supplementation reduces cancer risk: Results of a randomized trial. Am J Clin Nutr 2007;85:1586-91.  Back to cited text no. 65
Anderson LN, Cotterchio M, Vieth R, Knight JA. Vitamin D and calcium intakes and breast cancer risk in pre- and postmenopausal women. Am J Clin Nutr 2010;91:1699-707.  Back to cited text no. 66
Ahn J, Peters U, Albanes D, Purdue MP, Abnet CC, Chatterjee N, et al. Serum Vitamin D concentration and prostate cancer risk: A nested case-control study. J Natl Cancer Inst 2008;100:796-804.  Back to cited text no. 67
Wang TJ, Pencina MJ, Booth SL, Jacques PF, Ingelsson E, Lanier K, et al. Vitamin D deficiency and risk of cardiovascular disease. Circulation 2008;117:503-11.  Back to cited text no. 68
Roy A, Lakshmy R, Tarik M, Tandon N, Reddy KS, Prabhakaran D, et al. Independent association of severe Vitamin D deficiency as a risk of acute myocardial infarction in Indians. Indian Heart J 2015;67:27-32.  Back to cited text no. 69
Mathieu C, Gysemans C, Giulietti A, Bouillon R. Vitamin D and diabetes. Diabetologia 2005;48:1247-57.  Back to cited text no. 70
Pittas AG, Harris SS, Stark PC, Dawson-Hughes B. The effects of calcium and Vitamin D supplementation on blood glucose and markers of inflammation in nondiabetic adults. Diabetes Care 2007;30:980-6.  Back to cited text no. 71
Parameaswari PJ, Revathy C, Shanthi B. A cross-sectional study on Vitamin D3 level in type 2 diabetes mellitus patients from Chennai, India. Int J Basic Med Sci 2012;3:130-4.  Back to cited text no. 72
Vimaleswaran KS, Berry DJ, Lu C, Tikkanen E, Pilz S, Hiraki LT, et al. Causal relationship between obesity and Vitamin D status: Bi-directional mendelian randomization analysis of multiple cohorts. PLoS Med 2013;10:e1001383.  Back to cited text no. 73
Parikh SJ, Edelman M, Uwaifo GI, Freedman RJ, Semega-Janneh M, Reynolds J, et al. The relationship between obesity and serum 1,25-dihydroxy Vitamin D concentrations in healthy adults. J Clin Endocrinol Metab 2004;89:1196-9.  Back to cited text no. 74
Kaur S, Sachdev HP, Dwivedi SN, Lakshmy R, Kapil U. Prevalence of overweight and obesity amongst school children in Delhi, India. Asia Pac J Clin Nutr 2008;17:592-6.  Back to cited text no. 75
Clements MR, Johnson L, Fraser DR. A new mechanism for induced Vitamin D deficiency in calcium deprivation. Nature 1987;325:62-5.  Back to cited text no. 76


  [Table 1], [Table 2], [Table 3]

This article has been cited by
1 Relationship and Effects of Vitamin D on Metabolic Syndrome: A Systematic Review
Nyein Wint Yee Theik,Oluwatimilehin E Raji,Priya Shenwai,Rutul Shah,Sahithi Reddy Kalluri,Tinaz H Bhutta,Hanan Hannoodee,Mahmoud Al Khalili,Safeera Khan
Cureus. 2021;
[Pubmed] | [DOI]
2 Vitamin-D Levels in Infants and Young Children in the Era of Routine Supplementation
Riya Lukose,Jessie Jose,Athira Thekkumpat Subramanian
Journal of Evolution of Medical and Dental Sciences. 2021; 10(3): 127
[Pubmed] | [DOI]
3 Are Indian obese children and adolescents at increased risk for Vitamin D deficiency?
Aashima Dabas,T. Aravind,Sangeeta Yadav,Mukta Mantan,Smita Kaushik
Indian Journal of Medical Sciences. 2021; 0: 1
[Pubmed] | [DOI]
Shipra Chaudhary,Nikhil Agarwal,Neha Singh
[Pubmed] | [DOI]
5 High prevalence of vitamin D deficiency in Shenzhen pregnant women
Lijun Zhao,Rui Chen,Baoting Nong,Yuhong Dou,Yuxia Li,Zhikang Xu,Caifeng Ma,Jikun Du,Helu Liu
The Journal of Maternal-Fetal & Neonatal Medicine. 2021; : 1
[Pubmed] | [DOI]
Spor ve Performans Arastirmalari Dergisi. 2021;
[Pubmed] | [DOI]
Shweta Agarwal,Dinesh Agarwal,Deval Parekh,Rakesh Kumar
[Pubmed] | [DOI]
8 Low dose depot oral vitamin D3v. daily oral vitamin D3 for treating nutritional rickets: a randomised clinical trial
Ravneet Kaur Saluja,Pooja Dewan,Sunil Gomber,Sri Venkata Madhu,Shuchi Bhat,Piyush Gupta
British Journal of Nutrition. 2021; : 1
[Pubmed] | [DOI]
9 Correlation of Vitamin D Deficiency With Severity of Chronic Heart Failure as Assessed by Functional Class and N-Terminal Pro-Brain Natriuretic Peptide Levels
Parminder S Otaal,Sudheer Pachipala,Lipi Uppal,Dinakar Bootla
Cureus. 2021;
[Pubmed] | [DOI]
10 Concentration levels of serum 25-Hydroxyvitamin-D and vitamin D deficiency among children and adolescents of India: a descriptive cross-sectional study
Akif Mustafa,Chander Shekhar
BMC Pediatrics. 2021; 21(1)
[Pubmed] | [DOI]
11 Efficacy of transdermal delivery of liposomal micronutrients through body oil massage on neurodevelopmental and micronutrient deficiency status in infants: results of a randomized placebo-controlled clinical trial
Aditi Apte,Mudra Kapoor,Sadanand Naik,Himangi Lubree,Pooja Khamkar,Diksha Singh,Dhiraj Agarwal,Sudipto Roy,Anand Kawade,Sanjay Juvekar,Rinti Banerjee,Ashish Bavdekar
BMC Nutrition. 2021; 7(1)
[Pubmed] | [DOI]
12 The Indian Society for Bone and Mineral Research (ISBMR) position statement for the diagnosis and treatment of osteoporosis in adults
Sanjay K. Bhadada,Manoj Chadha,Usha Sriram,Rimesh Pal,Thomas V. Paul,Rajesh Khadgawat,Ameya Joshi,Beena Bansal,Nitin Kapoor,Anshita Aggarwal,Mahendra K. Garg,Nikhil Tandon,Sushil Gupta,Narendra Kotwal,Shriraam Mahadevan,Satinath Mukhopadhyay,Soham Mukherjee,Subhash C. Kukreja,Sudhaker D. Rao,Ambrish Mithal
Archives of Osteoporosis. 2021; 16(1)
[Pubmed] | [DOI]
13 Quality of Life (QoL) in Postmenopausal Breast Cancer Patients Receiving Adjuvant Hormonal Therapy
Raouef Ahmed Bichoo,Anjali Mishra,Punita Lal,Chand Gyan,Gaurav Agarwal,Amit Agarwal,Saroj Kanta Mishra
Indian Journal of Surgery. 2021;
[Pubmed] | [DOI]
14 Development and Implementation of Liposomal Encapsulated Micronutrient Fortified Body Oil Intervention for Infant Massage: An Innovative Concept to Prevent Micronutrient Deficiencies in Children
Aditi Apte,Himangi Lubree,Mudra Kapoor,Sanjay Juvekar,Rinti Banerjee,Ashish Bavdekar
Frontiers in Public Health. 2021; 8
[Pubmed] | [DOI]
15 Vitamin D Status and Usual Nutrient Intake of Filipino Children Aged 6–12 Years in Selected Areas in the Philippines: A 2018 National Nutrition Survey
Imelda Angeles-Agdeppa,Keith V. Tanda,Elsa Lamy
Journal of Nutrition and Metabolism. 2021; 2021: 1
[Pubmed] | [DOI]
16 Age- and sex-specific concentrations of bone remodeling markers in healthy Indian adults with and without vitamin D deficiency
Rimesh Pal,Anshita Aggarwal,Naresh Sachdeva,Sant Ram,Abhilasha Garg,Anil Bhansali,Sanjay Kumar Bhadada
Archives of Osteoporosis. 2021; 16(1)
[Pubmed] | [DOI]
17 Vitamin D deficiency in athletes and its impact on outcome of Anterior Cruciate Ligament surgery
Ravi Gupta,Akash Singhal,Anil Kapoor,Vaibhav Bohat,Gladson David Masih,Rohil Mehta
European Journal of Orthopaedic Surgery & Traumatology. 2021;
[Pubmed] | [DOI]
18 Prevalence of 25-Hydroxyvitamin D Deficiency and its severity correlation with Acute Traumatic brain Injury in Indian Patients: A Perspective Observation Study
Ajay Choudhary,Rajesh Sharma,Ashok Kumar,Kuldeep Kinja,Ravi Berwal,Swapnil Sharma
Research Journal of Pharmacy and Technology. 2021; : 3874
[Pubmed] | [DOI]
19 Analysis of vitamin D level among asymptomatic and critically ill COVID-19 patients and its correlation with inflammatory markers
Anshul Jain,Rachna Chaurasia,Narendra Singh Sengar,Mayank Singh,Sachin Mahor,Sumit Narain
Scientific Reports. 2020; 10(1)
[Pubmed] | [DOI]
20 Association of vitamin D gene polymorphisms in children with asthma - A systematic review
Narmada Ashok,Richard Kirubakaran,Radha Saraswathy
Heliyon. 2020; 6(9): e04795
[Pubmed] | [DOI]
21 Lower levels of vitamin D are associated with SARS-CoV-2 infection and mortality in the Indian population: An observational study
Sunali Padhi,Subham Suvankar,Venketesh K. Panda,Abhijit Pati,Aditya K. Panda
International Immunopharmacology. 2020; 88: 107001
[Pubmed] | [DOI]
22 Exploring links between vitamin D deficiency and COVID-19
Mradul Mohan,Jerin Jose Cherian,Amit Sharma,Anuradha Chowdhary
PLOS Pathogens. 2020; 16(9): e1008874
[Pubmed] | [DOI]
23 Prediction models and questionnaires developed to predict vitamin D status in adults: a systematic review
G. Naureen,K. M. Sanders,L. Busija,D. Scott,K. Lim,J. Talevski,C. Connaughton,S. L. Brennan-Olsen
Osteoporosis International. 2020;
[Pubmed] | [DOI]
24 Prevalence of Vitamin D Deficiency Among Newborns
R. Kishore Kumar,Hari Das,S.V. Girish,Akash Nevilebasappa
Indian Pediatrics. 2020; 57(3): 258
[Pubmed] | [DOI]
25 Relationship Between Statin-associated Muscle Symptoms, Serum Vitamin D and Low-density Lipoprotein Cholesterol – A Cross-sectional Study
Harsheen Kaur,Jagjit Singh,Jeet Ram Kashyap,Ravi Rohilla,Harmanjit Singh,Shivani Jaswal,Rajiv Kumar
European Endocrinology. 2020; 16(2): 137
[Pubmed] | [DOI]
26 Parathormone decline levels are better markers of symptomatic hypocalcemia following total thyroidectomy than parathormone alone
Sendhil Rajan,Bharadhwaj Ravindhran,Belinda George,Ganapathi Bantwal,Ganapathi Vageesh Ayyar,Lakshmeshwar N Mohan
Biomarkers in Medicine. 2020; 14(12): 1121
[Pubmed] | [DOI]
27 Comparing greenhouse gas emissions and nutritional values based on Korean suggested meal plans and modified vegan meal plans
Geun-woo Park,Ji-yung Kim,Min Hyeok Lee,Jung Im Yun,Kyu-Hyun Park
Journal of Animal Science and Technology. 2020; 62(1): 64
[Pubmed] | [DOI]
28 Hepatic osteodystrophy and fracture risk prediction using FRAX tool in Indian patients with cirrhosis
Arka De,Debadrita Ray,Sandeep Lamoria,Vishal Sharma,Tilak Raj Khurana
JGH Open. 2020;
[Pubmed] | [DOI]
29 Recent Advances in Marine-Based Nutraceuticals and Their Health Benefits
Vida Šimat,Nariman Elabed,Piotr Kulawik,Zafer Ceylan,Ewelina Jamroz,Hatice Yazgan,Martina Cagalj,Joe M. Regenstein,Fatih Özogul
Marine Drugs. 2020; 18(12): 627
[Pubmed] | [DOI]
30 Association of the 25(OH) vitamin D status with upper respiratory tract infections morbidity in water sports elite athletes
Jamshid Umarov,Fikrat Kerimov,Abdurakhim Toychiev,Nikolay Davis,Svetlana Osipova
The Journal of Sports Medicine and Physical Fitness. 2020; 59(12)
[Pubmed] | [DOI]
31 A Nutrigenetic Approach to Investigate the Relationship between Metabolic Traits and Vitamin D Status in an Asian Indian Population
Buthaina E. Alathari,Dhanasekaran Bodhini,Ramamoorthy Jayashri,Nagarajan Lakshmipriya,Coimbatore Subramanian Shanthi Rani,Vasudevan Sudha,Julie A. Lovegrove,Ranjit Mohan Anjana,Viswanathan Mohan,Venkatesan Radha,Rajendra Pradeepa,Karani S. Vimaleswaran
Nutrients. 2020; 12(5): 1357
[Pubmed] | [DOI]
32 Association of vitamin D in pregnancy and after 15 days of delivery along with neonatal
Vinit Mehrotra,Amirita Sandhu,Ruchira Nautiyal
Clinical Nutrition Experimental. 2019;
[Pubmed] | [DOI]
33 Vitamin D for skeletal and non-skeletal health: What we should know
Nipith Charoenngam,Arash Shirvani,Michael F. Holick
Journal of Clinical Orthopaedics and Trauma. 2019;
[Pubmed] | [DOI]


Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Access Statistics
Email Alert *
Add to My List *
* Registration required (free)

  In this article
   Sources of Vitam...
   Vitamin D Status...
   Magnitude of Vit...
   Causes of Vitami...
   Consequences of ...
  The Way Forward
   Article Tables

 Article Access Statistics
    PDF Downloaded1302    
    Comments [Add]    
    Cited by others 33    

Recommend this journal